

11. Mahon AK, Flynn MG, Stewart LW, McFarlin BK, Iglay HB, Mattes RD, Lyle RM, Considine RV. Protein intake during energy restriction: Effects on body composition and markers of metabolic and cardiovascular health in postmeno-


21. McKeown NM. Whole grain intake and in-


145. Khan N, Afag F, Mukhtar H. Cancer chemoprevention through dietary antioc- 


man VA, Ritenbaugh C, Thomson CA, Wasserman L, Stefanick ML. Influence of a diet 
from beans to berries and be-
tcancer risk: The European Prospective 

155. Tavani A, Gallus S, Franceschi S, La Vec-
atre cancer risk: The European Prospective 
Investigation into Cancer and Nutrition (EPIC): An observational study. 

156. Jacobs DR, Marquart L, Slavin J, Kushi 
LH. Whole-grain intake and cancer: An 

157. Key TJ, Appleby PN, Rossell MS. Health 
effects of vegetarian and vegan diets. Proc 

158. Jacobs DR, Marquart L, Slavin J, Kushi 
LH. Whole-grain intake and cancer: An 

159. Wu AH, Yu MC, Tseng CC, Pike MC. Epi-
demiology of soy exposures and breast can-

160. Messina MJ, Loprinzi CL. Soy for breast 

161. Macdonald HM, New SA, Fraser WD, 
Campbell MK, Reid DM. Low dietary po-
tassium intake and bone mass and bone density: A meta-analy-
sis of net endogenous acid production are as-
associated with low bone mineral density in premeno-
923-933.

162. Sellmeyer DE, Stone KL, Sebastian A, 
Cummins SR. A high ratio of dietary ani-
mal to vegetable protein increases the rate of bone loss and the risk of bone loss and density in post-
73:118-122.

163. Kerstetter JE, Svastaalsee CM, Caseria 
DM, Mitnick ME, Insogna KL. A threshold 

164. Vergnaud P, Garnpo P, Meunier PJ, 
Breart G, Kambahi K, Delmas PD. Under-

165. Stone P, Arlot M, Chomaz MC, Duboeuf F, Muenier PJ, Delmas PD. Serum under-

166. Feskanich D, Weber P, Willet WC, Rockett 
H, Booth SL, Colditz GA. Vitamin K intake and hip fractures in women: A prospective 


168. Bingham SA, Day NE, Luben R, Ferrari P, 
Slimani N, Norat T, Clavel-Chapelon F, 
Kesse E, Neters A, Boeing H, Tjnneland A, 
Overvad K, Martinez C, Dorronsoro M, 
Gonzalez CA, Key TJ, Trichopoulos A, 
Naska A, Vines P, Tumino R, Krogh V, 
Bueno-de-Mesquita HB, Peeters PH, 
Blighd G, Hallmans G, Lund E, Skeie G, 
Kaaks R, Riboli E. European Prospective 

169. Krieger NS, Frick KK, Bushinsky DA. Mechanism of acid-induced bone resorp-
tion. Curr Opin Nephrol Hypertens. 2004; 
13:429-436.


171. Tucker KL, Hannan MT, Kiel DP. The acid-
base hypothesis: Diet and bone in the 

172. New SA, Bolton-Smith C, Grubb DA, Reid 
DM. Nutritional influences on mineral den-
sity: A cross-sectional study in premeno-
apausal women. Am J Clin Nutr. 1997;65: 
1831-1839.

173. Arjmandi BH, Smith BJ. Soy isoflavones’ 
3485S.

174. Sellmeyer DE, Stone KL, Sebastian A, 
Cummins SR. A high ratio of dietary ani-
mal to vegetable protein increases the rate of bone loss and the risk of bone loss and density in post-
73:118-122.

175. Tucker KL, Hannan MT, Kiel DP. The acid-
base hypothesis: Diet and bone in the 

176. New SA, Bolton-Smith C, Grubb DA, Reid 
DM. Nutritional influences on mineral den-
sity: A cross-sectional study in premeno-
apausal women. Am J Clin Nutr. 1997;65: 
1831-1839.

177. Macdonald HM, New SA, Fraser WD, 
Campbell MK, Reid DM. Low dietary po-
tassium intake and bone mass and bone density: A meta-analy-
sis of net endogenous acid production are as-
associated with low bone mineral density in premeno-
923-933.

178. Szulc P, Arlot M, Chapuy MC, Duboeuf F, 
294:2849-2856.

WJ, Su LH, Hsieh CC. Long-term vegetar-
ian diet and bone mass: A cross-sectional 
2002;76:531-537.

180. Sellmeyer DE, Stone KL, Sebastian A, 
Cummins SR. A high ratio of dietary ani-
mal to vegetable protein increases the rate of bone loss and the risk of bone loss and density in post-
73:118-122.

181. Arjmandi BH, Smith BJ. Soy isoflavones’ 
3485S.
American Dietetic Association (ADA) position adopted by the House of Delegates Leadership Team on October 18, 1987, and reaffirmed on September 12, 1992; September 6, 1996; June 22, 2000; and June 11, 2006. This position is in effect until December 31, 2013. ADA authorizes republication of the position, in its entirety, provided full and proper credit is given. Readers may copy and distribute this paper, providing such distribution is not used to indicate an endorsement of product or service. Commercial distribution is not permitted without the permission of ADA. Requests to use portions of the position must be directed to ADA headquarters at 800/877-1600, ext. 4835, or ppapers@eatright.org.

Authors: Winston J. Craig, PhD, MPH, RD (Andrews University, Berrien Springs, MI); Ann Reed Mangels, PhD, RD, LDN, FADA (The Vegetarian Resource Group, Baltimore, MD).

Reviewers: Pediatric Nutrition and Sports, Cardiovascular, and Wellness Nutrition dietetic practice groups (Catherine Conway, MS, RD, YAI/National Institute for People with Disabilities, New York, NY); Sharon Denny, MS, RD (ADA Knowledge Center, Chicago, IL); Mary H. Hager, PhD, RD, FADA (ADA Government Relations, Washington, DC); Vegetarian Nutrition dietetic practice group (Virginia Messina, MPH, RD, Nutrition Matters, Inc., Port Townsend, WA); Esther Myers, PhD, RD, FADA (ADA Scientific Affairs, Chicago, IL); Tamara Schryver, PhD, MS, RD (General Mills, Bloomington, MN); Elizabeth Tilak, MS, RD (WhiteWave Foods, Inc, Broomfield, CO); Jennifer A. Weber, MPH, RD (ADA Government Relations, Washington, DC).

Association Positions Committee Workgroup: Dianne K. Polly, JD, RD, LDN (chair); Katrina Holt, MPH, MS, RD; Johanna Dwyer, DSC, RD (content advisor).

The authors thank the reviewers for their many constructive comments and suggestions. The reviewers were not asked to endorse this position or the supporting paper.